Vertical Flight Efficiency During Climb and Descent

In addition to horizontal flight efficiency, various stakeholders have indicated to be interested in the vertical aspect of flight efficiency as well. The PRU have responded to this need by developing and testing performance indicators addressing vertical flight efficiency for possible use in the future.

The focus in this document is put on vertical flight efficiency during the climb and descent phases of flights rather than during the cruising phase.

During climb and descent, pilots are often faced with intermediate level-offs (Figure 1).

Typical vertical profile with intermediate level segments during climb and descent

Figure 1: Typical vertical profile with intermediate level segments during climb and descent

These level segments increase fuel burn since they generally take place at suboptimal altitudes. During descent the impact on fuel efficiency is generally higher because additional thrust has to be applied to fly level, while the lowest thrust setting could be used when a complete continuous descent would be available and flown by the pilot.

Hence, several studies and the reference material related to this topic (Larsson 2011), (Performance Review Commission 2008), (Canarslanlar et al. 2014), (Airbus 2004) suggest that the benefit pool regarding fuel efficiency is larger for descents than for climbs.

Continuous climb operations (CCO) and continuous descent operations (CDO) are beneficial for the environment, in terms of fuel burn, the associated emissions and noise (Figure 2).

Smoother trajectory with continuous climb and descent Figure 2: Smoother trajectory with continuous climb and descent

The methodology presented here (see grey box) is very similar for the climb and descent phase so that the results for both phases are directly comparable.

The radius of 200NM around the airport is chosen because aircraft generally reach their cruising altitude within 200NM from take-off and the cruise level is also generally left within 200NM from the arrival airport. Another reason for this choice is to be able to distinguish the climb/descent phase of the flight from the cruise phase.

Additionally to the 200NM radius, a vertical limit is used based on the altitude put in the flight plan at 200NM from the airport. This altitude is used to be able to highlight inefficiencies which are introduced on a tactical basis. Obviously, these inefficiencies are not known to the airlines before they take off so the amount of fuel on board might not be the optimal amount.

Methodological notes

In the climb or descent parts of the trajectories the level segments are determined by calculating the rate of climb or descent (vertical velocity) between every pair of consecutive data points. If the rate of climb or descent between two data points is smaller than or equal to a chosen vertical velocity, that part of the trajectory is considered as a level flight segment. Doing this for the entire climb or descent trajectory, the distance and time flown level can be calculated.

Assumptions

Case study

The practical use of the methodology is demonstrated in the following case study showing all flights from/to a specific European airport, based on a radar data sample for July 2015.

The following assumptions were made for the analysis:

Table 1 shows the numerical results of the analysis.

Description Climb Descent
Average time flown level per flight 14.1 s 59.4 s
Average percentage of time flown level per flight 1.2 % 4.6 %
Average distance flown level per flight 1.6 NM 4.3 NM
Average percentage of distance flown level per flight 1.5 % 3.7 %
Median percentage of highest CCO/CDO altitude 98.2 % 94.4 %
Number of flights 8518 8439

Table 1: Numerical results

It is clear that much less level flight is detected during climb than during descent. This observation is the same for all major European airports.

As an example, the vertical trajectories during descent are plotted in blue in Figure 3 while the level segments are highlighted in red. It is clear that there are some vertical glitches present in the data but these will rather result in an underestimation of the amount of level flight.

Vertical trajectories during descent Figure 3: Vertical trajectories during descent.

It’s also interesting to evaluate the positions of level segments. Level segments of several flights around the same position suggest the presence of specific restrictions. Figure 4 shows the lateral view of the descent trajectories. Besides the level segments close to the airport, due to the vectoring and ILS procedures towards the runway, there is some level flight at higher altitudes as well. These level segments are most likely a result of constraints in handover procedures between neighbouring ANSPs, airspace restrictions or operational procedures which signals scope for future improvements.

Lateral trajectories during descent Figure 4: Lateral trajectories during descent.

Note

This study is available as a PRU Leaflet, see (Peeters 2016) in the References section below.

A paper has been submitted to the 2016 ICNS Conference, see (Peeters et al. 2016) in the References section below.

References

  1. Larsson, Peter. 2011. “CCD versus CDA.” Scandinavian Airlines System. PDF.
  2. Performance Review Commission. 2008. “Vertical Flight Efficiency.” PDF.
  3. Canarslanlar, A.O., Usanmaz O., Turgut E.T., Cavcar M., Dogeroglu T., Yay O.D., and Armutlu K. 2014. “The Measurements of Turkish Airspace ATM Efficiency Based on Actual Flight Data.” Poster. PDF.
  4. Airbus. 2004. Getting to Grips with Fuel Economy. Getting Grips With. Airbus. URL. PDF.
  5. ICAO. 2006. Doc 8168. Aircraft Operations. Fifth. ICAO. PDF.
  6. Peeters, Sam. 2016. “Vertical Flight Efficiency During Climb and Descent.” Performance Review Unit. PDF.
  7. Peeters, S., H. Koelman, R. Koelle, R. Galaviz-Schomisch, J. Gulding, and M. Meekma. 2016. “Towards a Common Analysis of Vertical Flight Efficiency.” In 2016 Integrated Communications Navigation and Surveillance (ICNS), 7A2-1-7A2-11. IEEE. doi:10.1109/ICNSURV.2016.7486368. PDF.

    Abstract: Significant efforts are underway to modernize global air traffic management systems. Flight efficiency is a major political design criterion. This paper addresses the identification and measurement of ATM related constraints on vertical flight efficiency with a focus on continuous descent operations. Efficiency of flight operations has become a key driver for identifying bottlenecks and constraints imposed by ATM on airspace user preferred flight trajectories. In particular, measures aiming at fuel-efficient operations attract a lot of attention. This paper reports on the work jointly performed by the FAA and EUROCONTROL to address vertical flight efficiency. Based on an empirical study of trajectory data for US and European airports, a vertical profile analysis algorithm has been developed considering research experiences and stakeholder consultations of both teams. This work was performed as the preparatory action of the joint US/Europe comparison report. The results include a joint and harmonized algorithm to describe the vertical trajectory profile and the initial definition of metrics for the performance measurement. This harmonized algorithm will be further be validated and refined as part of the US/Europe comparison report including a wider set of airports. Demonstrating the general feasibility, the algorithm will be further promoted for use in international performance activities under ICAO.